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Automatic repeat request (ARQ) methods cannot increase the capacity of a
memoryless channel. However, they can be used to decrease the complexity of the
channel-coding system to achieve essentially error-free transmission and to reduce
link margins when the channel characteristics are poorly predictable. This article
considers ARQ methods on a power-limited channel (e.g., the deep-space channel),
where it is important to minimize the total power needed to transmit the data,
as opposed to a bandwidth-limited channel (e.g., terrestrial data links), where the
spectral efficiency or the total required transmission time is the most relevant per-
formance measure. In the analysis, we compare the performance of three reference
concatenated coded systems used in actual deep-space missions to that obtainable
by ARQ methods using the same codes, in terms of required power, time to transmit
with a given number of retransmissions, and achievable probability of word error.
The ultimate limits of ARQ with an arbitrary number of retransmissions are also
derived.

I. Introduction

A major concern in data communications is the control of transmission errors caused by channel noise
so that error-free data can be delivered to the user. Error control systems that rely only on a one-
directional (forward) channel are called forward error correction (FEC) systems. Systems that make use
of a reverse or feedback channel are called automatic repeat request (ARQ) systems and are based on
protocols that request retransmission of data blocks when errors are detected. ARQ systems trade time
for link margin and aim at returning all of the data reliably.

It is well known [2, p. 213] that the capacity of a memoryless channel cannot be increased by using
a feedback channel.1 However, the implementation complexity for a given performance goal can be con-
siderably reduced by using the feedback channel for requesting retransmission of data frames. Situations
where the probability of frame error needs to be virtually zero, such as for heavily compressed data, or
where large link margins are imposed by poorly predictable channel impairments, are particularly suitable
for retransmission schemes.

1 In this article, the feedback channel is assumed to be noiseless. This is a realistic assumption since the uplink channel
used for deep space typically operates at a high signal-to-noise ratio (SNR), includes powerful error detection capabilities,
and already employs ARQ in the uplink direction.
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We consider the use of ARQ methods on the downlink channel of deep-space missions. Some rudimen-
tary forms of ARQ are already used in deep-space missions, where blocks of corrupted or lost data are
isolated and requested again from the spacecraft. Retransmission methods have been considered, partic-
ularly as a playback strategy to overcome weather outages. We propose to use retransmission methods
in a more systematic and automatic fashion, based on the error detection capability of existing codes.
This implies a wider use of the uplink channel, not only for commands, but as a true “reverse” channel
representing an integral part of the communication system. The effects of ARQ methods on the downlink
performance must, therefore, be included in the link analysis. This article considers ARQ methods on a
power-limited channel (e.g., the deep-space channel), where it is important to minimize the total power
needed to transmit the data, as opposed to a bandwidth-limited channel (e.g., terrestrial data links),
where the spectral efficiency or the total required transmission time is the most relevant performance
measure.

We consider an interplanetary spacecraft transmitting frames of data to Earth. The frame consists
of at least one Reed–Solomon (RS) codeword and may have an identification header. In this article, we
limit the analysis to the case where a frame is one RS codeword. The frame is convolutionally encoded
before transmission. Each RS codeword has redundancy, or parity symbols, that may be used for either
error correction or error detection.

An (n, k) RS code with minimum distance dmin = n− k+ 1 can correct all received words containing
c errors and e erasures within the constraint 2c+ e < dmin, when hard-decision decoding is used. If the
received word is within c errors and e erasures of a valid word, then the decoder will output the correct
codeword. If the selected codeword is not the transmitted one, then a decoder error has occurred. If there
is no codeword within c errors and e erasures, then a decoder failure is declared, and retransmission is
requested. A similar situation occurs when a soft-bounded distance decoder is used. Given the decoding
radius, we can calculate analytically the exact probability of decoder error and decoder failure for linear
block codes [5].

An ARQ system must at least rely on error detection. The system we will discuss here uses a convolu-
tional code concatenated with a (255,223) RS code for FEC. The convolutional codes considered here are
constraint length K = 7 rate 1/2, K = 15 rate 1/4, and K = 15 rate 1/6. The RS code is used for both
error correction and detection. Such a system is in the category of type I hybrid ARQ [10, pp. 393–423].

Section II describes the concatenated system at the heart of the ARQ system described in Section III.
More thorough coverage of the concatenated system without ARQ can be found in [1], [3], and [9].
Section V describes features that are not examined in depth in this article, such as the effect of combining
multiple copies of received words.

We have not yet fully considered problems that may be encountered with errors in the frame header
or with frames that contain more than one codeword. Thus far, we have assumed a noiseless feedback
channel, and we have ignored the effect of undetected errors, which occur with extremely low probability
for the codes considered.

II. The Reference System

The nominal system is a concatenated system without ARQ. We consider a t-error-correcting (n, k)
RS code on GF(28), with n = 255, k = n− 2t = 223, and t = 16. This means that the code sends k 8-bit
symbols of information using n 8-bit symbols and that it can correct all patterns of t or fewer errors. This
code is used as the outer code of a concatenated system, as shown in Fig. 1. We assume for this article
that there is infinite interleaving between the RS encoder and the convolutional encoder, which implies
that the errors at the input of the RS decoder can be modeled as independent. This allows a simpler
analysis that can be used to bound the performance of a more practical implementation.
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Fig. 1.  The ARQ system.

For this system, there are several different SNRs that will be discussed. There is an SNR for bits that
are convolutionally encoded and decoded. Let sV be the SNR for the channel and inner (convolutional)
code only. The concatenated system uses more power-per-information bit because k symbols are sent
using n coded symbols, increasing the signal power by a factor of n/k. Let s = (n/k)sV denote the SNR
of the concatenated system. Since this concatenated RS and convolutional system is the nominal system
in this article, s will be called the nominal SNR.

We can measure the symbol error rate, vs(s), at the output of the Viterbi decoder by simulation.
Since errors at the RS decoder input may be assumed to be independent because of infinite interleaving,
the probability of decoder failure and decoder error, i.e., the probability that more than the correctable
number of symbols are in error, is given by

p(s) =
n∑

i=t+1

(
n

i

)
vs(s)i[1− vs(s)]n−i (1)

In this article, we use p(s) to approximate the probability of decoding failure, and we ignore the probability
of decoding error, since it is negligible for the (255,223) RS code. Specifically, if more than t = 16 errors
occur, the probability of decoder error is less than 1/t! ≈ 4.8× 10−14 [8].

The simulated symbol error rate at the output of the Viterbi decoder for the (7,1/2) code and the
calculated word error rate of the (255,223) RS code assuming infinite interleaving are shown in Table 1.2

Similar simulated data for the (15,1/4) and (15,1/6) codes are given in Tables 2 and 3.

Table 1. Simulated symbol error rate at the output
of the Viterbi decoder (7,1/2) and the calculated
word error rate of the (255,223) RS code assuming
infinite interleaving.

sV , dB s, dB vs(s) p(s)

1.05 1.63 8.53 × 10−2 8.83 × 10−1

1.55 2.13 3.41 × 10−2 7.11 × 10−3

1.85 2.43 1.91 × 10−2 1.08 × 10−5

1.95 2.53 1.51 × 10−2 4.90 × 10−7

2.05 2.63 1.14 × 10−2 9.48 × 10−9

2.55 3.13 3.20 × 10−3 2.50 × 10−17

2 F. Pollara and S. Dolinar, “Concatenated Codes Performance at Low Bit Error Rates,” JPL Interoffice Memorandum
331-88.2-043 (internal document), Jet Propulsion Laboratory, Pasadena, California, July 13, 1988.
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Table 2. Simulated symbol error rate at the output
of the Viterbi decoder (15,1/4) and the calculated
word error rate of the (255,223) RS code assuming
infinite interleaving.

sV , dB s, dB vs(s) p(s)

0.10 0.68 4.22 × 10−2 4.397 × 10−2

0.30 0.88 2.24 × 10−2 7.735 × 10−5

0.50 1.08 1.08 × 10−2 4.327 × 10−9

Table 3. Simulated symbol error rate at the output
of the Viterbi decoder (15,1/6) and the calculated
word error rate of the (255,223) RS code assuming
infinite interleaving.

sV , dB s, dB vs(s) p(s)

0.10 0.68 2.28 × 10−2 9.453 × 10−5

0.30 0.88 1.19 × 10−2 1.674 × 10−8

0.50 1.08 5.79 × 10−3 3.364 × 10−13

Fitting a curve to the simulated Viterbi decoder symbol error rates give us the approximation Vs(s) ≈
vs(s). The fit is of the form Vs(s) = ea0+a1s+a2s

2
, where the coefficients in the exponent are given for each

code in Table 4.3 The comparisons of original data vs(s) and curve fits Vs(s) for each code are shown in
Fig. 2. Using the curve fit Vs(s) for vs(s) in Eq. (1), we get an approximation for the probability of RS
decoder failure P (s):

P (s) =
n∑

i=t+1

(
n

i

)
Vs(s)i[1− Vs(s)]n−i

The comparison of the probability of an undecodable word at the output of the RS decoder from both
the simulated vs and from the fit Vs is shown in Fig. 3.

III. The ARQ System

A. ARQ Protocols

The possible implementations of ARQ protocols fall into different categories, all of which include
automatic requests for retransmission of data that are deemed unreliable by the receiver. The performance
of ARQ protocols is often measured by the accepted-packet error rate and the throughput, which is the
average number of information bits accepted by the receiver per packet sent. The variables of interest for
deep-space applications are the required transmitter power for a given data rate, the required probability
of block error, the time available for transmission, the number of retransmissions, the error detection
capability of the code, and the round-trip delay. These variables affect the onboard complexity and
memory requirements and the ground operational complexity.

3 This fit is for s measured in dB, which yields a “quadratic” exponent instead of the more commonly used “linear”
exponent for s not in dB reported, for example, in S. Dolinar, “Empirical Formula for the Performance of the Recommended
(15,1/6) Convolutional Code,” JPL Interoffice Memorandum 331-90.2-060 (internal document), Jet Propulsion Laboratory,
Pasadena, California, October 12, 1990.
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Table 4. Viterbi symbol error rate fits, where each Vs (s) is

of the form ea0+a1s+a2s2
and s is in dB.

Code a0 a1 a2

(7,1/2) −0.993617 −0.235839 −0.409607
(15,1/4) −1.731157 −1.291763 −1.201945
(15,1/6) −2.095216 −1.882523 −0.877300

Fig. 2.  Original data vs (s) and curve fit Vs(s).
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Fig. 3.  For the concatenated systems, the
word error rates from the simulation p(s) and
from the fitted curves P(s) are shown as a
function of s(Eb/N0).
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The most appropriate protocols are based on selective repeat, where the transmitter retransmits only
the packets requested by the receiver. Here the throughput does not depend on the round-trip trans-
mission delay [10, p. 399]. Other protocols that have a throughput depending on round-trip delay are
described here for contrast.

(1) The “stop and wait” ARQ protocol is one in which the transmitter sends one packet
and waits for either an acknowledgment or a repeat request before sending either the
next packet or the previous packet again. Although this is simple to implement at
both the transmitter and receiver, the throughput is very dependent on the round-trip
transmission time. For deep-space applications, this is not a practical protocol.

(2) The “go back N” protocol is one in which the transmitter sends packets sequentially.
When the receiver is unable to decode a packet, it sends a repeat request and stops
listening to the transmitter until the requested packet arrives. When the transmitter
receives the repeat request, it goes back N and starts sending sequentially again. This
version has a better throughput than the stop and wait protocol. The throughput and N
depend on the round-trip transmission time, but the effect of the round-trip transmission
time is lower for a relatively noiseless channel than for a noisy one.

In a selective repeat system, the transmitter must keep a buffer of what it has sent so that retransmis-
sion is possible. The receiver may store unreliable frames and combine them with subsequent retransmis-
sions to improve reliability, as we will discuss in Section V. Let R be the number of retransmissions that
are either allowed or that are necessary. If some maximum number of retransmissions is allowed, then
we ask what fraction of the data is received error free. If it is essential to return all of the data, then we
ask how many retransmissions are necessary to return the data. The answer to both questions depends
on the channel SNR.
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B. Buffer Size On Board the Spacecraft

Using ARQ, every frame transmitted must be stored long enough for it to be received, processed, and
(if necessary) for a repeat request to be received and processed by the spacecraft. So, the buffer size on
board the spacecraft needs to be large enough to store all the data transmitted in that amount of time.
The buffer size B is a function of the data rate D, the round-trip transmission time τ , and the on-ground
processing time η. Specifically,

B = D(τ + η)

If we consider a Mars–Earth–Mars round-trip transmission time of approximately 25 min, a ground pro-
cessing time of 1 min, and a data rate of 512 kb/s, the buffer size must be approximately 100 Mbytes. The
ground processing time is also an operations question since it depends on how often uplink transmissions
are desired.

C. ARQ Analysis

We consider the use of ARQ to transmit a large data set. After the first transmission of the whole
data set, subsequent retransmissions will repeat only the frames that were flagged as unreliable. The
average amount of data that must be sent after the Rth retransmission is the amount of data sent during
the Rth retransmission times the probability of decoder failure. If successive retransmissions of the same
frame are decoded without reference to previous transmissions, then the fraction of data that is still in
error after R retransmissions is P (s) where s is the nominal SNR. Thus, the fraction of the original data
that is still in error after R retransmissions is

PR(s) = P (s)R+1

If previous copies of a retransmitted word are combined with the current copy, as explained in Section V,
then PR(s) may be smaller.

In this article, time refers to the amount of time the transmitter is actively sending coded data and,
correspondingly, the amount of time the receiver is actively receiving data. In this way, time relates well
to the amount of transmitter energy used for sending data.4 For our purposes, references to time are
normalized by the amount of time it takes to send the whole data set once. Thus, a system with the same
coding, but without ARQ, sends the data back in 1 time unit. The average amount of time it takes to
send the data set when R retransmissions are allowed is given by

tR(s) = 1 +
R−1∑
i=0

Pi(s) =
R∑
i=0

P i(s) =
1− P (s)R+1

1− P (s)

Note that a system that allows no more than R retransmissions of the data is done transmitting before
R+1 units of time have past, i.e., tR ≤ R+1. For high SNR, few transmissions are necessary, so tR ≈ 1.
For low SNR, the maximum number of transmissions will almost always be used, so tR ≈ R + 1. If the
number of retransmissions is unlimited, the average amount of time is given by

4 The amount of time between when the first and last bytes of data are received is different and depends on operations. If
the ground station cannot send and receive simultaneously, then there is a delay while a clump of data is being received
and before a batch of repeat requests can be sent. There may also be some delay on the ground for processing. As a
result, the amount of clock time it takes to send the data is different from the amount of time the transmitter is sending
data.
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t∞(s) =
1

1− P (s)

Since, on average, each frame is transmitted tR > 1 times, for a system that allows no more than R
retransmissions, the effective SNR, sR(s), is larger than the nominal SNR, s:

sR(s) = stR(s) = s

R∑
i=0

P i(s) = s
1− P (s)R+1

1− P (s)

Note that s0(s) = s. If the number of retransmissions is unlimited, the effective SNR is given by

s∞(s) =
s

1− P (s)

Performance for low SNRs is described in the Appendix, as it is primarily of academic interest. The
effective rate at which data are received is rR(s) = 1/tR(s). Note that t∞(s) = 1/r∞(s) = 1/[1− P (s)].

1. ARQ Performance Limits: Limiting Performance for Zero Error Probability. It is
interesting to establish the performance limits of ARQ for a given coding system when the maximum
number of retransmissions is arbitrary. The minimum effective SNR at which the system can produce
vanishingly small probability of word error for arbitrary R is given by

s∗∞ = min
s

[s∞(s)] (2)

Accordingly, PR(s) → 0 for large R, if sR(s) > s∗∞. Conversely, if R and s are sufficiently small so that
the effective SNR sR(s) is less than s∗∞, then vanishingly small word error probability is impossible. The
minimum effective SNR s∗∞ for a given ARQ coded system can be compared with the ultimate Shannon
limit [(22r − 1)/2r] < s∗∞, where r is the rate of the concatenated system.

2. ARQ Performance Limits: Limiting Performance for Nonzero Error Probability. If
the required word error probability Pε is nonzero, then one has to simultaneously optimize the required
effective SNR, sε, and the number of retransmissions, R. The limiting performance is given by the
envelope of the curves for different R’s (as shown later for the (7,1/2) code in Fig. 7) or, equivalently,
by the locus of the minimum effective SNRs for each R. Since a given data volume can be transmitted
reliably with power proportional to s∗∞, a fraction 1 − Pε of the data volume can be transmitted with
power proportional to sε = s∗∞(1− Pε). Then the limiting ARQ performance is given by

Pε = 1− sε
s∗∞

, sε ≤ s∗∞ (3)

It has been suggested5 that Eq. (3) can also be explained by considering the ARQ system as an erasure
channel, whose capacity can be achieved by just retransmitting codewords until they get through. Since
RS codewords get through with probability 1−Pε, the capacity of the erasure channel is C = 1−Pε, and
we must have r ≤ C, i.e., the rate is limited by capacity. It can be verified6 that r = sε/s

∗
∞.

5 Personal communication with M. Costa, Jet Propulsion Laboratory, Pasadena, California, August 1994.

6 Ibid.
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D. The (7,1/2) Convolutional Code

Three plots showing the pairwise relationships between nominal SNR, effective SNR, and probability
of word error for the (7,1/2) convolutional code are shown in Fig. 4. In designing the coding system,
we start from a given available nominal SNR. The effective SNR is then a measure of the average power
actually used for transmission, including the penalty due to retransmissions. For example, if we start
out at a nominal SNR of 2.5 dB, we would have a resulting effective SNR also of 2.5 dB, as shown by
point A in Figs. 4(b) and 4(c), for R = 1. Point B in Figs. 4(b) and 4(c) represents an anomalous
operation of the system, where the given nominal SNR is insufficient for good performance, even though
the effective SNR has the same value of 2.5 dB due to the retransmission overhead. Note that, for R = 1,
Fig. 4(c) shows that, for high nominal SNR, the effective SNR is equal to the nominal SNR and, for low
nominal SNR, the effective SNR is 3-dB more than (i.e., double) the nominal SNR. The latter follows from
the fact that for finite R the data can be transmitted at most R+1 times (and at low SNR, the maximum
number of retransmissions will almost always be used), so the effective SNR due to retransmissions is
approximately 10 log10(R + 1) + s for low SNR. This phenomenon at low SNR happens for all finite R,
but not when the number of retransmissions is unrestricted. This effect appears on all the curves, but is
at such low nominal SNRs that discussion is deferred to the Appendix.

Fig. 4.  Pairwise relationships between (a) nominal SNR s, (b) effective SNR sR (s), and
(c) probability of word error PR (s) for the (7,1/2) + (255,223) convolutional code.
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A parametric plot of sR(s) versus tR(s) in Fig. 5 shows a local minimum where the effective SNR is
low and the average amount of time spent transmitting is close to 1. For the (7,1/2) code and R > 1,
a nominal SNR s = 2.109 dB yields an effective SNR sR = 2.166 dB, and the amount of time spent
transmitting (tR = 1.013) is only 1.3-percent more time than the time to transmit once. For nominal
SNR higher than 2.25 dB, the channel is relatively noiseless and few retransmissions are requested. Thus,
sR(s) ≈ s, and the ARQ system performance is comparable to the system without ARQ, as evidenced by
tR being nearly 1. As the nominal SNR gets lower than 2.1 dB, the amount of data transmitted increases
and so the effective SNR sR and time tR also increase.

Fig. 5.  Effective SNR (sR) plotted with the
average time to transmit (tR) using the (7,1/2)
+ (255,223) code.
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So, for an additional 0.057 dB = 2.166 dB − 2.109 dB of SNR (due to 1.3-percent more time required
to transmit), the data will be delivered virtually error free, if an unlimited number of retransmissions is
allowed, instead of with a probability of error of 0.013 for the same system without ARQ. This is especially
useful for compressed data where errors can propagate through the data. Another advantage is that the
link margin, for say a 10−6 word error rate, can be reduced by more than 0.3 dB, if retransmissions are
used to combat unforeseen SNR reductions and 1.3-percent more time is allowed for transmission.

The fraction of the total data volume that is accepted (successfully decoded) after R retransmissions,
1−PR+1, versus the amount of time for R retransmissions is shown in Fig. 6 for several values of nominal
SNR.

Fig. 6.  Decoded data volume versus time for the (7,1/2) + (255,223)
code.
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For the concatenated system considered in this section, the minimum effective SNR [see Eq. (2)]
is s∗∞ = 2.166 dB, where this minimum is achieved at nominal SNR s∗ = 2.109 dB. This limiting
SNR value of s∗∞ is still significantly higher than the Shannon limit (22r − 1)/2r = −0.209 dB, where
r = (1/2) · (223/255). We can compute the limiting time and rate at nominal SNR s∗ to be

t∗∞ = t∞(s∗) = 1.013

r∗∞ = r∞(s∗) = 0.987

The limiting performance curve [see Eq. (3)] is shown in Fig. 7, and it coincides with the envelope of the
parametric curves of sR(s) and PR(s) for finite R.

Fig. 7.  PR 
(s) versus sR 

(s), (7,1/2)
+ (255,223) code.
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E. The (15,1/4) Convolutional Code

Three plots showing the pairwise relationships between nominal SNR, effective SNR, and probability of
word error for the (15,1/4) convolutional code are shown in Fig. 8. In Fig. 9, a parametric plot of effective
SNR versus time shows a local minimum where the effective SNR is low and the average amount of time
spent transmitting is close to 1. For the (15,1/4) code, a nominal SNR s = 0.747 dB yields an effective
SNR sR = 0.782 dB, and the amount of time spent transmitting (tR = 1.008) is only 0.8-percent more
time than transmitting once. For nominal SNR higher than 0.8 dB, the channel is essentially noiseless
and few retransmissions are requested. As the nominal SNR gets lower than 0.740 dB, the amount of
data transmitted increases and so the effective SNR sR and time tR also increase.

So, for an additional 0.035 dB = 0.782 dB − 0.747 dB of SNR (due to 0.795-percent more time to
transmit), the data will be delivered without detected errors, if an unlimited number of retransmissions
are allowed, instead of with a probability of error of 0.0079 for the same system without ARQ. The
fraction of the total data volume that is accepted after R retransmissions, 1− PR+1, versus the amount
of time for R retransmissions is shown in Fig. 10.
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R = 0 (NO ARQ)
R = 1
R = 2
R = 3
R = 4
R = 5

Fig. 8.  Pairwise relationships between (a) nominal SNR s, (b) effective SNR sR (s), and
(c) probability of word error PR (s) for the (15,1/4) + (255,223) convolutional code.
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Fig. 10.  Decoded data volume versus time for the
(15,1/4) + (255,223) code.
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For the concatenated system considered in this section, we have s∗∞ = 0.782 dB, where the minimum
is achieved at s∗ = 0.747 dB. This limiting SNR value of s∗∞ is still significantly higher than the Shannon
limit > (22r − 1)/(2r) = −0.917 dB, where r = (1/4) · (223/255). We can compute the limiting time and
rate at the channel SNR s∗ to be

t∗∞ = t∞(s∗) = 1.008

r∗∞ = r∞(s∗) = 0.992

The limiting performance curve is shown in Fig. 11 as the envelope of the parametric curves of sR(s) and
PR(s) for finite R.
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Fig. 11. PR 
(s) versus sR 

(s), (15,1/4)
+ (255,223) code.
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F. The (15,1/6) Convolutional Code

Three plots showing the pairwise relationships between nominal SNR, effective SNR, and probability
of word error for the (15,1/6) convolutional code are shown in Fig. 12.

In Fig. 13, a parametric plot of effective SNR versus time shows a local minimum where the effective
SNR is low and the average amount of time spent transmitting is close to 1. For the (15,1/6) code,
a nominal SNR s = 0.536 dB yields an effective SNR sR = 0.574 dB, and the amount of time spent
transmitting (tR = 1.009) is only 0.9-percent more time than transmitting once. For nominal SNR higher
than 0.6 dB, the channel is essentially noiseless and few retransmissions are requested. As the nominal
SNR gets lower than 0.53 dB, the amount of data transmitted increases and so the effective SNR sR and
time tR also increase. The amount that they can increase is limited because the number of retransmissions
is limited to R.

So, for an additional 0.038 dB = 0.574 dB − 0.536 dB of SNR (due to 0.88-percent more time to
transmit), the data will be delivered without detected errors, if an unlimited number of retransmissions is
allowed, instead of with a probability of error of 0.0087 for the same system without ARQ. The fraction
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R = 0 (NO ARQ)
R = 1
R = 2
R = 3
R = 4
R = 5

Fig. 12.  Pairwise relationships between (a) nominal SNR s, (b) effective SNR sR (s), and
(c) probability of word error PR (s) for the (15,1/6) + (255,223) convolutional code.
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of the total data volume that is accepted after R retransmissions, 1 − PR+1, versus the amount of time
for R retransmissions is shown in Fig. 14.

For the concatenated system considered in this section, we have s∗∞ = 0.574 dB, where the minimum
is achieved at s∗ = 0.536 dB. This limiting SNR value of s∗∞ is still significantly higher than the Shannon
limit (22r − 1)/(2r) = −1.15 dB, where r = (1/6) · (223/255). We can compute the limiting time and rate
at the channel SNR s∗ to be

t∗∞ = t∞(s∗) = 1.009

r∗∞ = r∞(s∗) = 0.991

The limiting performance curve is shown in Fig. 15 as the envelope of the parametric curves of sR(s) and
PR(s) for finite R.
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Fig. 14.  Decoded data volume versus time for the
(15,1/6) + (255,223) code.
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IV. Conclusions

We have compared the performance of three reference concatenated coded systems used in actual deep-
space missions to that obtainable by ARQ methods using the same codes, in terms of required power,
time to transmit with a given number of retransmissions, and achievable probability of word error. We
have established the ultimate limits of ARQ with an arbitrary number of retransmissions.

For an additional 0.035 to 0.057 dB of average power, the retransmission scheme can deliver virtually
error-free data to the user. This is important when just a few residual errors may disrupt the operation
of subsequent data processing stages, e.g., the decompression of source encoded data. ARQ schemes are
also attractive when the available SNR is poorly predictable, since they allow one to trade time for link
margin. The disadvantages are the need for large onboard storage and for heavier usage of the uplink
channel.
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V. Topics for Future Investigation

Frame Identification: If the identification headers are not in every frame, there may be questions about
whether the frame requested for repeat can be accurately identified in the request. This may depend on
the usage of onboard memory or on how consistent the round-trip delay is. If there is a sequential log of
data that was coded and transmitted, and the periodic header information is associated with the right
frames, the repeat request should be able to accurately identify the data to be re-sent.

Packet Combining: Traditionally, ARQ systems decode retransmitted frames without consideration of
the information contained in earlier noisy versions of frames already received. By combining subsequent
transmissions of the same word/packet, the effect is that the probability of correctly decoding increases.
There are two ways to do this. One is to concatenate the many received versions of the word, forming
a longer, lower-rate codeword. This is called code combining. The other is to combine symbols of the
received versions of the word, forming a word of the same length but with stronger symbols. This is
called diversity combining.

Kallel and Leung [7] describe the performance, in terms of throughput, of several schemes with different
techniques for combining different numbers and combinations of copies of received words. They run the
comparisons for a binary symmetric channel, a nonfading and a Rayleigh fading channel with additive
white Gaussian noise, as well as for schemes with and without forward error correction (in the form of
rate 1/2 and rate 7/8 convolutional coding). Their focus is on systems with finite receiver buffers. Kallel
[6] shows some significant performance improvements for systems using code combining.

Either of these techniques may be able to be translated into an improved SNR. Let si denote the
improved SNR for a word transmitted i times. The effect of considering this new SNR is that the
lines in Fig. 6 would have a steeper slope with each retransmission. One can view this as a multiple
rate adaptive coding system, since the system runs at the highest rate, while the channel is relatively
noiseless and effectively decreases the rate when the channel quality drops. The fraction of words that
were retransmitted i times that must be retransmitted again is on average P (sR). The fraction of data
that is still in error after i retransmissions is

Pi(s) =
i∏

j=0

P (sj)

It follows that the amount of time it takes for i retransmissions is

ti(s) = 1 +
i−1∑
m=0

Pm(s) = 1 +
i−1∑
m=0

m∏
j=0

P (sj)

This leads to an effective SNR of

si(s) = s

1 +
i−1∑
m=0

m∏
j=0

P (sj)



Incremental Redundancy: An ARQ system using incremental redundancy is one in which the trans-
mitter sends more parity when requested by the receiver. While packet combining is strictly a strategy for
improving the receiver without altering the transmission process, it is also equivalent to the incremental
redundancy strategy when a repetition code is used. Incremental redundancy methods have the potential
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for achieving the best possible ARQ performance, but their implementation is more complicated. Parallel
concatenated codes (turbo codes) have been recently proposed for deep-space applications [4] and seem
to be particularly suited for incremental redundancy ARQ schemes.
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Appendix

Low Nominal SNRs

When an ARQ system is limited in the number of retransmissions R, at low SNRs, the effects of R
being finite are apparent. This appendix describes the effects at low SNR although, as we shall see,
the system should not be designed to operate in this region. To illustrate the effects, we will consider
the system with concatenated RS and (7,1/2) codes, though the results hold for all three concatenated
systems described in this article.

We describe an ARQ system as having three performance regions that depend on the nominal SNR.
At high SNRs the system behaves as if no ARQ is present; at mid SNRs, the system behaves like an
ARQ system with an unlimited number of repeat requests; and at low SNRs, the system behaves like
R+ 1 repeats are being used. The transitions between these regions are smooth and follow the equations
in Section III.C. The plot of effective SNR versus time in Fig. A-1 illustrates the three regions for three
different values of R. The system performance for SNRs ranging from high through mid range is the
focus of the main portion of this article. Here they will be discussed at an intuitive level for comparison
to the low-SNR regions.

Fig. A-1.  Average time versus effective SNR for the (7,1/2)
+ (255,223) code and varying nominal SNR.
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As we have seen in Section III.C, at high SNR the system performs much like a system without
ARQ. The data are almost always delivered reliably by the first transmission. So, for high SNRs, the
probability of word error, amount of time to transmit, and effective SNR are indistinguishable from a
system without ARQ. As such, there also are no effects of a finite R on the performance. For mid-range
SNRs, repeat requests are being made with some frequency, but the SNR is sufficiently high that correct
decoding almost always occurs within the limited number of retransmissions. In this region, performance
is approximately that of a system with an unlimited number of retransmissions. For low SNRs, the system
is frequently retransmitting all R times. The amount of time it takes to transmit is nearly R + 1. The
effective SNR, sR(s), is approximately 10 log10(R + 1) more than the nominal SNR, s. The probability
of word error is near 1, and the system is performing as though it is using a R + 1 repeat on a very
noisy channel (this is, in fact, what it is doing most of the time). The transition from mid-to-low SNRs
produces a “hook” in all of the curves. The behavior is similar for different R, so R = 1 will be used to
show the mid-to-low SNR transitions for the different performance curves in Fig. A-2.
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Fig. A-2.  Parametric plot of probability of word error versus effective SNR with curves
showing relations between (a) nominal SNR and probability of both (b) word error and
(c) effective SNR.
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